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The capacitance between the origin and any other lattice site in an infinite square lattice
of identical capacitors each of capacitance C is calculated. The method is generalized
to infinite Simple Cubic (SC) lattice of identical capacitors each of capacitance C. We
make use of the superposition principle and the symmetry of the infinite grid.
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1. Introduction

A classic problem in electric circuit theory studied by many authors over many years

is the computation of the resistance between two nodes in a resistor network. Besides

being a central problem in electric circuit theory, the computation of resistances

is also relevant to a wide range of problems ranging from random walk,1,2 theory

of harmonic functions3 to first-passage processes4 to Lattice Green’s Functions5

∗Corresponding author.

695

http://dx.doi.org/10.1142/S0217984910022767


March 19, 2010 11:49 WSPC/147-MPLB S0217984910022767

696 J. H. Asad et al.

(LGF). The connection with these problems originates from the fact that electri-

cal potentials on a grid are governed by the same difference equations as those

occurring in the other problems. For this reason, the resistance problem is often

studied from the point of view of solving the difference equations, which is most

conveniently carried out for infinite networks. Kirchhoff6 formulated the study of

electric networks more than 150 years ago. The electric-circuit theory is discussed

in detail in a classic text by Van der Pol and Bremmer7 where they derived the

resistance between nearby points on the square lattice.

In the previous 60 years, many efforts focused on analyzing infinite networks of

identical resistors. In these efforts, scientists used different methods. For example,

F. J. Bartis8 introduced how complex systems can be treated at the elementary

level and showed how to calculate the effective resistance between adjacent nodes

of different lattices of one-ohm resistors. His note is interesting and educational.

Venezian,9 Atkinson and Van Steenwijk10 used the superposition of current distri-

bution to calculate the effective resistance between adjacent sites on infinite net-

works (i.e. square, SC, hexagonal, . . . ). The mathematical problem involves the

solution of an infinite set of linear, inhomogeneous difference equations which are

solved by the method of separation of variables. Numerical results for the resistances

between arbitrary sites are presented.

Monwhea Jeng11 introduced a mapping between random walk problems and

resistor network problems, where his method was used to calculate the effective re-

sistance between any two sites in an infinite two-dimensional square lattice of unit

resistors and the superposition principle was used to find the effective resistances

on toroidal- and cylindrical-square lattices. In the last decade, many papers12–18

have been published using an alternative method based on the LGF. The resis-

tance between two arbitrary lattice sites for different infinite networks of identical

resistors were studied for both the perfect and the perturbed networks. Finally,

Wu19 obtained the resistance between two arbitrary nodes in a resistor network

in terms of the eigenvalues and eigenfunctions of the Laplacian matrix associated

with the network. Explicit formulas for two point resistances are deduced in his pa-

per for regular lattices in one, two, and three-dimensions under various boundary

conditions.

Little attention has been paid to infinite networks consisting of identical capac-

itances C. Van Enk20 studied the behavior of the impedance of a standard ladder

network of capacitors and inductors where he analyzed it as a function of the size of

the network. Recently, Asad et al.21–23 and Hijjawi et al.24 investigated many infi-

nite lattices of identical capacitors using the LGF method and charge distribution

method. In these papers, numerical results for the equivalent capacitance between

the origin and any other lattice site was presented — using the above two methods

— for the perfect infinite square network. Numerical results was also presented for

the so-called perturbed infinite square network which results by removing one or

two bonds from the perfect network.
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In this paper, we investigate analytically and numerically the capacitance be-

tween arbitrary lattice sites in an infinite square and SC grids using the charge

distribution method which is based upon the superposition principle. The asymp-

totic behavior is also studied for large separation between the two sites. The basic

approach used here is similar to that followed by Atkinson and Steenwijk.10

Finally, it is important to mention that problems involving large or infinite elec-

trical resistive networks are interesting and educational.25,26 Applications include

geophysical exploration with electrical currents, petroleum flow in oil wells, and

random walks.27

2. Infinite Square Lattice

In this section, we consider an infinite square network consisting of identical ca-

pacitances C. Let us define the voltage at the node (l,m) to be given by Vl,m, and

suppose that a charge of Ql,m enters that node from an external source.

Now using Ohm’s and Kirchhoff’s laws, we can write

Ql,m = (Vl,m − Vl+1,m)C + (Vl,m − Vl−1,m)C

+(Vl,m − Vl,m+1)C + (Vl,m − Vl,m−1)C

= 4Vl,mC − Vl+1,mC − Vl−1,mC − Vl,m+1C − Vl,m−1C . (1)

We shall look for an integral representation for Vl,m, and take it to be in the form,

Vl,m =

∫ 2π

0

dβF (β)Vl,m(β) , (2)

with

Vl,m(β) = exp(i|l|α+ imβ) . (3)

Here, α is a function of β.

The above representation is a modified Fourier transform. For l � 0, we get

4Vl,m(β)−Vl+1,m(β)−Vl,m+1(β)−Vl,m−1(β) = 2 exp(ilα+imβ)[2−cosα−cosβ] . (4)

From the above equation, we require (i.e. in order that the contributions of the

potential vanishes) α to be related to β as

cosα+ cosβ = 2 . (5)

In a similar way, we find zero for this contribution if l ≺ 0. Thus, for any

integrable F (β), then Ql,m given in Eq. (1) goes to zero, unless l = 0.

For 0 ≺ β ≺ 2π, then Eq. (5) has only an imaginary solution given by

α = i log[2− cosβ +
√

3− 4 cosβ + cos2 β] . (6)
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For the case l = 0, we may write:

Q0,m = C

∫ 2π

0

dβF (β) exp(imβ)[4 − 2 exp(iα)− 2 cosβ];

= 2C

∫ 2π

0

dβF (β) exp(imβ)[cosα− exp(iα)];

= −2iC

∫ 2π

0

dβF (β) sinα exp(imβ) . (7)

The above charges may be construed as the coefficients of the Fourier series

− 2iF (β) sinα =
1

2π

∞
∑

m=−∞

Q0,m exp(−imβ) . (8)

Now, take Q0,m = δ0m, i.e. Q0,0 = 1, and Q0,m = 0. This situation corresponds

to the case where a charge Q enters at the node (0, 0) and leaves at infinity. Note

that no charges leave the lattice at any other finite node. Hence, with this choice,

F (β) =
i

4π sinα
. (9)

Thus, we can write

Vl,m =
i

4π

∫ 2π

0

dβ

sinα
exp(i|l|α+ imβ) . (10)

One may ask, what the capacitance between the origin and the site (l,m) is?

First of all, it is clear that the potential difference between these two sites is (V0,0−

Vl,m). Now, imagine that a charge of one micro-Coulomb enters the network at

the node (l,m) instead of (0, 0), allowing it to leave at infinity. The new potential

at (l,m) will now be what we called V0,0 and the new potential at (0, 0) will be,

by symmetry, what we called Vl,m. Thus, the new potential difference between the

origin and (l,m) is just minus the previous one.

If we choose to imagine that one micro-Coulomb leaves the node (l,m), all the

potential difference will be reversed in sign. Therefore, the new potential difference

between the origin and the node (l,m) is again given by (V0,0 − Vl,m).

Exploiting the linearity of Ohm’s law and superpose all the charges and poten-

tials appertaining to the configuration in which one micro Coulomb enters at (0, 0)

and leaves at (l,m), one can write

2[V0,0 − Vl,m]Cl,m = 1 , (11)

or,

Cl,m =
1

2[V0,0 − Vl,m]
. (12)

Thus, Cl,m can be written as

Cl,m =
1

i
2π

∫ 2π

0
dβ

sinα
[1− exp(i|l|α+ imβ)] .

(13)
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Table 1. Numerical values

of Cl,m in units of C for an
infinite square grid.

l,m Cl,m

0 ∞

1,0 2

2,0 1.37597

3,0 1.16203

4,0 1.04823

5,0 0.974844

1,1 1.5708

2,1 1.29326

3,1 1.13539

4,1 1.03649

5,1 0.968523

2,2 1.1781

3,2 1.08177

4,2 1.00814

5,2 0.951831

3,3 1.02443

4,3 0.972869

5,3 0.929041

4,4 0.937123

5,4 0.90391

5,5 0.878865

It is obvious that Cl,m = Cm,l due to the symmetry of the lattice. Finally, we

may transform Eq. (13) into the manifestly real form,

Cl,m =
1

1
π

∫ π

0
dβ

sinh |α| [1− exp(−|l||α|) cosmβ] .
(14)

As l → ∞, C∞,m → 1
1

π

∫
π

0

dβ
sinh |α|

→ 0 .

Using Eq. (14), one can calculate the capacitance Cl,m by means of Mathematica.

Table 1 shows some calculated values. Similar results were obtained by us22 using

a similar approach, and by using the LGF approach.7

3. Infinite SC Network

The above method can be generalized to an infinite three-dimensional SC network

of identical capacitors. Here we consider the three indices and a charge entering the

site (l,m, n) is related to the potentials by

Ql,m,n = (6Vl,m,n − Vl+1,m,n − Vl−1,m,n − Vl,m+1,n

−Vl,m−1,n − Vl,m,n+1 − Vl,m,n−1)C . (15)
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Choose Vl,m,n to be given as

Vl,m,n =

∫ 2π

0

dβ

∫ 2π

0

dγF (β, γ)vl,m,n(β, γ) , (16)

where vl,m,n(β, γ) = exp(i|l|α+ imβ+ inγ), and with cosα+cosβ +cos γ = 3, i.e.

α = cos−1(3− cosβ − cos γ).

For l 6= 0, one can easily show that

Ql,m,n = 2

∫ 2π

0

dβ

∫ 2π

0

dγF (β, γ) exp(i|l|α+ imβ+ inγ)x[3− cosα− cosβ− cos γ] ,

(17)

whereas

Q0,m,n = −2i

∫ 2π

0

dβ

∫ 2π

0

dγF (β, γ) sinα cosmβ cosnγ . (18)

The inverse of this double Fourier series gives

− 2iF (β, γ) sinα =
4

π2

∞
∑

m=−∞

∞
∑

n=−∞

Q0,m,n exp(−imβ) exp(−inγ) . (19)

Let us choose Q0,0,0 = 1, and Q0,m,n = 0, unless both m and n vanish. This implies

that

F (β, γ) =
i

8π2 sinα
. (20)

Substituting Eq. (20) into Eq. (16) yields the potential Vl,m,n. That is,

Vl,m,n =

∫ 2π

0

dβ

∫ 2π

0

dγ
i

8π2 sinα
vl,m,n(β, γ) . (21)

As in Sec. 2, we can compute the capacitance Cl,m,n by assuming that a charge of

one micro-Coulomb enters the origin and leaves the lattice site (l,m, n). Thus,

Cl,m,n =
1

i
4π2

∫ 2π

0

∫ 2π

0
dβdγ
sinα

[1− exp(i|l|α) + imβ + inγ]
. (22)

Again, this expression is symmetric under any permutation of the indices. A man-

ifestly real form of Eq. (22) is

Cl,m,n =
1

1
π2

∫ π

0

∫ π

0
dβdγ

sinh |α| [1− exp(−|l||α|) cosmβ cosnγ]
. (23)

As l → ∞, C∞,m,n → 1
1

π2

∫
π

0

∫
π

0

dβ dγ
sinh |α|

→ 0.

Using Eq. (23), we can calculate Cl,m,n by means of Mathematica. Table 2 shows

some calculated values.



March 19, 2010 11:49 WSPC/147-MPLB S0217984910022767

Infinite Networks of Identical Capacitors 701

Table 2. Numerical values of Cl,m,n in units of C for an infinite SC grid.

l,m, n Cl,m,n l,m, n Cl,m,n l,m, n Cl,m,n

0 ∞ 410 2.144 531 2.08958

100 3.000003 411 2.138018 532 2.084667

110 2.531139 420 2.12867 533 2.077909

111 2.3906 421 2.124356 540 2.080503

200 2.382751 422 2.113825 541 2.079348

210 2.306284 430 2.111192 542 2.075559

211 2.264847 431 2.108277 543 2.070342

220 2.225432 432 2.100721 544 2.064235

221 2.206804 433 2.09079 550 2.070179

222 2.173162 440 2.094776 551 2.069768

300 2.220392 441 2.092865 552 2.066637

310 2.200632 442 2.087565 553 2.062804

311 2.186289 443 2.0803 554 2.057948

320 2.167735 444 2.072238 555 2.05287

321 2.159146 500 2.11299 600 2.088777

322 2.14053 510 2.109767 610 2.087086

330 2.136601 511 2.106833 633 2.069498

331 2.131646 520 2.101692 644 2.056729

332 2.119735 521 2.099336 655 2.047817

333 2.105161 522 2.093075 700 2.071745

400 2.15107 530 2.091324 531 2.08958

This method can be generalized in a straightforward way to four and more

dimensions. In a (d + 1)-dimensional hypercubic lattice, the capacitance between

the origin and the lattice site (m1,m2, . . . ,md) is

Cm1,...,md
=

1
i

(2π)d

∫ 2π

0 · · ·
∫ 2π

0
dβ1···dβd

sinα
[1− exp(i|m1|α) + im2β2 + · · ·+ imdβd]

,

(24)

where cosα+ cosβ1 + · · ·+ cosβd = d.

As a further generalization, consider the SC network with different capacitances

in the three directions. For example, say, 1 micro-Farad along the x-direction, 1
p

micro-Farad along the y-direction and 1
q
micro-Farad along the z-direction. In this

case, the charge entering the lattice site (l,m, n) is given by

Ql,m,n = 2(1+p+q)Vl,m,n−Vl+1,m,n−pVl,m+1,n−pVl,m−1,n−qVl,m,n+1−qVl,m,n−1 .

(25)

Therefore, the capacitance Cl,m,n is still given by Eq. (24), but with

α = cos−1(1 + p+ q − p cosβ − q cos γ) . (26)

Now, with p = q = 1 we recover the symmetric SC lattice, while for p = 1 and

q = 0, we give the square lattice discussed in Sec. 2. Finally, for p 6= 1 and q = 0,
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Fig. 1. The capacitance Cl,m in terms of l and m for an infinite square grid along the [10]
direction.

we have the “rectangular” lattice (i.e. a square lattice with unequal capacitances

in the two coordinate directions).

4. Results and Discussion

This work is divided into two main parts. In part one, the capacitance between the

site (0, 0) and the site (l,m) in an infinite square grid consisting of identical capac-

itors is calculated using the superposition of charge distribution. The capacitance

Cl,m is expressed in an integral form which is evaluated analytically and numeri-

cally (Table 1). In part two, the capacitance between the site (0, 0, 0) and the site

(l,m, n) in an infinite SC grid consisting of identical capacitors is also calculated

using the superposition of charge distribution. The capacitance Cl,m,n is expressed

in an integral form as the infinite square grid which is evaluated analytically and

numerically (Table 2).

In Figs. 1 and 2, the capacitance is plotted against the site (l,m). Figure 1 shows

the capacitance of the infinite square grid as a function of l and m along the [10]

direction and Fig. 2 shows the capacitance of the infinite square grid as a function

of l and m along the [11] direction. Inversion symmetry is present in both figures

around the origin.

In Figs. 3 and 4, the capacitance is plotted against the site (l,m, n). Figure 3

shows the capacitance of an infinite SC grid as a function of l,m, and n along the

[100] direction and Fig. 4 shows the capacitance of the infinite SC grid as a function

of l,m, and n along the [111] direction. One can notice from these two figures that

there are inversion symmetries about the origin.

The asymptotic form of Eqs. (14) and (23) corresponding to the identical capac-

itors of infinite square lattice and infinite simple cubic lattice, respectively, leads to

zero as l goes to infinity. (See Figs. 1 and 3.)
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Fig. 2. The capacitance Cl,m in terms of l and m for an infinite square grid along the [11]
direction.
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Fig. 3. The capacitance Cl,m,n in terms of l,m, and n for an infinite SC grid along the [100]
direction.
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direction.
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An investigation of infinite complicated lattices and of lattices with missing ca-

pacitor (bond) is in progress. The analysis of complex infinite networks of identical

capacitors (i.e. triangular, honeycomb, and Kagome networks) has been demon-

strated, in a recent paper28 using basic concepts of physics.

References

1. P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, in The Carus
Mathematical Monograph, Ser. 22 (The Mathematical Association of America, USA,
1984), p. 83.
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